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Abstract--In this paper the motion of a single bubble or particle in an accelerating liquid flow is analysed 
using a generalized force equation. The motion of the bubble relative to the fluid gives rise to a drift flux 
of liquid which affects the mean flow field of the liquid. This flux is calculated in terms of the effective 
or added mass coefficient of the bubble, C m, which is equal to I/2 for a small bubble at high Reynolds 
number. By analysis of the flow in terms of the three flow fields associated with the interstitial liquid, the 
displaced liquid and the bubble itself, we obtain a rational method for calculating the forces acting on 
the bubble, the mass conservation equations and the pressure field in the liquid. For a bubbly flow with 
low void fraction this form of the mass conservation equation reduces to an expression for liquid and 
gas superficial velocity as a function of relative velocity (the slip measured relative to the interstitial 
velocity, to be defined) and void fraction, where the constants are defined in terms of C m. Unlike the 
commonly used relation of Zuber & Findlay (1965), our expression can be generalized to non-uniform 
flows. Our predictions (using C m = 1/2) agree with Zuber & Findlays' empirical equations for low void 
fraction E in a vertical pipe. They do not, however, agree for high values of E. A new analysis of the mean 
pressure field in disperse two-phase flow is presented. While the bubbles respond to the interstitial velocity 
and pressure field, the pressure of interest is usually the average over the whole liquid volume. We show 
how these are related. The models developed here are applied to the practically important flow of air 
bubbles in an inclined nozzle, and are compared with recent laboratory measurements. 
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1. I N T R O D U C T I O N  

Recent research has led to a better understanding of the forces on bubbles and particles in 
non-uniform unsteady flows. In particular, earlier misunderstandings about the form of added mass 
forces were clarified. 

The first problem has been to generalize the classical result for the force F~ on a sphere moving 
with velocity v in a uniform steady flow u0(t) of an inviscid fluid, 

F,=ptVb ( l + C m ) - - ~ - C m ~ - ~  , [1] 

to a non-uniform unsteady flow. By analysing inviscid flow around a sphere in rotativnal straining 
flow, Thomas et aL (1983) and Auton et al. (1987; Auton 1987) concluded that the in~erfacial force 
on a sphere that is small compared with the length over which the velocity gradients vary is 

{ Duo, dv~ } 
F,, = PL Vb (1 + Gin) ~ --  C m - ~  - gi - [CL(V --  u0) X ¢..o]i . [2a] 

Here u and oJ are the liquid velocity and vorticity (¢0 = V x u0) in the absence of the bubble and 
Duo~/Dt is the liquid acceleration at the location (xb) of the bubble and is defined by 

Duo, = ( OUo, OUo,'~ 
+ u0j -~-5-. J (x = xb), [2b] Dt \ 0t u x j /  

tTo whom all correspondence should be addressed. 
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where PL and PG are the liquid and gas densities, V b is the volume of the bubble, g~ is the acceleration 
due to gravity [= ( - g ,  0, 0), if x is vertical] and CL is the bubble lift coefficient. Expression [2a] 
has been derived by a number of authors for irrotational flow, these are reviewed by Thomas et 
al. (1983). 

We shall follow the suggestion of Thomas et al. (1983) that a Viscous drag FD can be simply added 
to the inviscid force, so that the total interfacial force on a spherical bubble is 

F~ = Fig + FD~, [3a] 

where FD, can be conveniently defined in terms of V~ the terminal rise (or fall) speed of the bubble 
in stationary liquid (at the same Reynolds number): 

(v,- Uo,) Iv , -  Uoi\ 

where Ap = PG - PL" Usually, Vt is better known than the drag coefficient Co or the bubble radius 
a. For a spherical bubble in a pure liquid f = l, and for a high Reynolds number bubble in dirty 
liquid, where Co is approximately constant, f -- I v~ - u0i ] / V t (see appendix A). 

We ignore the effects of the wakes and the turbulence produced by bubbles (of importance in 
dirty water, or with large bubbles), this assumption is based on the work of Lance (1986) who has 
shown that it is likely that the mean motion and pressure of the bubble and liquid are not affected 
by the bubble turbulence if 

where u0 is a characteristic mean liquid velocity, and E is the void fraction of bubbles. 
Once the interracial force Fi is determined, the motion of the bubble is related to F~ by Newtons' 

second law: 

(dr ,  _ g,) .  [3cl F, = PG Vb \ dt 

Classical calculations of the added mass coefficient Cm for simple bubble geometries at low 
Reynolds number have been made by Lamb (1932) and Milne-Thomson (1968). Other approaches 
to analyse added mass effects have been to include added mass terms in constitutive equations of 
motion for the bubble (Hinze 1962; Wallis 1969; Drew et al. 1979). 

The approach used here is similar in principle to that of Cook & Harlow (1984) in that the 
two-phase flow field is taken to consist of three different flow fields: the bulk liquid far away from 
the bubble, the displaced liquid around the bubble and the bubble itself. Cook & Harlow introduce 
relationships between the three fields in terms of a parameter which is a fixed ratio of the void 
fraction of the displaced liquid to the volume fraction of the bubble. In this work the three fields 
are related in terms of the added mass coefficient Cm. 

The practical advantages of working with three velocity fields are: 

(i) The empirical relationships between relative velocity, void fraction and the 
terminal rise velocity can be replaced by a theoretical expression which can then 
be used in non-uniform flows with different bubble shapes. 

(ii) The differences between the pressure near and far from the bubbles can be 
analysed, so that rational estimates can be given of the average liquid pressure, 
the wall pressure and the interstitial pressure far from the bubbles. These 
differences are of the order of the void fraction, and depend on the relative 
velocity between the bubbles and the liquid. They do not seem to have been 
analysed previously. 

There have been several investigations in the determination of pressure loss in two-phase 
gas-liquid flows in pipes and fittings. Spedding et al. (1982) give an extensive review of the work 
carried out in two-phase flow pressure loss in inclined pipes. In general, the pressure drop due to 
resistance caused by the presence of particles is of interest, since flows of fluids through beds 
composed of stationary granular particles is a frequent occurrence in the chemical industry 
(Coulson et al. 1978). There has therefore been a great deal of work on engineering formulations 
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of pressure forces (Wallis 1969; Spalding 1980; Lewis & Davidson 1985). Such work is limited, 
however, in that the models use representations of pressure terms which do not seem to us to be 
physically correct. Prosperetti & Jones (1984) have presented a more rigorous analysis of pressure 
forces in disperse two-phase flow in which the pressure term is considered to be a combination of 
several different terms associated with average pressure, pressure drag and added mass forces, and 
rapidly varying components of pressure. A feature of their analysis with which we disagree is that 
their calculation of the pressure field is not based on a local analysis of the flow around the bubbles. 
In a similar approach we attempt to interpret the pressure forces in terms of the forces acting on 
the bubbles. 

The final section of this paper is a theoretical analysis of two-phase acclerating flow in an inclined 
linear nozzle. The effect of void fraction on the variation of liquid velocity and bubble velocity 
through the nozzle is investigated. A prediction of two-phase pressure drop for the nozzle is 
compared with the experimental results of Lewis & Davidson (1985). 

2. THE EFFECT OF PARTICLES ON FLUX OF F L U I D  

The general problem under consideration is the motion of a single air bubble in a liquid whose 
diameter is less than the length scales of the inhomogeneities in the flow. The bubble velocity is 
then v and the liquid velocity u0 is defined as that of the unperturbed fluid far from the bubble, 
for a flow containing several bubbles u0 would be the velocity of the undisturbed fluid between the 
bubbles ("interstitial" velocity), as illustrated in figure 1. By using this definition, rather than a 
definition based on the velocity averaged over the liquid volume, the dynamics of the bubble can 
be more easily calculated when there is a small but finite void fraction. 

Darwin (1953) showed that in the potential flow of a sphere through a stationary fluid a mass 
of liquid is displaced equal to the hydrodynamic or virtual mass. Darwin defined this as the drift 
volume of fluid and calculated the trajectories of the particles of displaced fluid. In his idealized 
problem a solid body of volume V which is moving uniformly through an infinite incompressible 
fluid at rest passes through a thin plane P of fluid at right angles to the motion [the problem is 
addressed more formally by Brooke-Benjamin (1986)]. After the body has passed far beyond this 
plane the displaced surface and the initial plane encloses a drift volume Cm V of fluid, as illustrated 
schematically in figure 2. If the bubbles move with a component of velocity v and the liquid moves 
at u, the number of bubbles passing relative to the liquid through a unit area at right angles to 
the flow is E(v -Uo)/V. Therefore the total liquid transported in unit time across a surface area 
A is 

ULA = [Uo(1 - -  E) + CmE(V -- U0)]A. 

fluxT far flux~near 
from bubble 

bubble 

[4] 

In a three-dimensional steady flow this is generalized to 

[u0/(1 - E) + Cue(v,-  u0,)] = 0, [5] 

where UL is the superficial liquid velocity and u0i is the velocity of the unperturbed fluid far away 
from the bubbles. 

Note that UL > U0 if Cmv > (1 + Cm)u. This result is similar to the ideas discussed by Noordzij 
(1973). In one limiting case [4] describes the flux of a given volume of marked fluid in a flow 
containing a void fraction of particles which are stationary in the flow (v = 0), as illustrated in 
figure 3a. The flux is less than the volume flow rate of liquid u0(1 -E )A because of entrapment 
of fluid by the particles, by a factor C~E/(1 - E). The other limiting case is UL = 0, which is the 
flow of bubbles rising in an ambient fluid. In this case [4] gives the negative (downward) flux of 
the fluid, which compensates for the motion of the bubbles (figure 3b). 

The essence of [4] and [5] is that they contain the velocity of the gas phase relative to the local 
unperturbed liquid velocity between the bubbles. When spatial averages are used this connection 
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Figure 1. Definition sketch of the local liquid velocity u 
and bubble velocity v in disperse two-phase flow at low 
void fraction. The phase average velocity (UL) and the 
effective interstitial velocity u0 far from the bubbles are 

also shown. 

~ v 

t=O 

/ 
t=O 

t > O  

Added mass pC mVast - ~oo  

Figure 2. Illustration of  the passage of a solid body 
through a plane P perpendicular to its path. The vertical 
line denotes a surface of material elements in the flow a t  

t = 0 and the deformed surface at a later time (t). The 
hatched area is a volume that tends to C m V as t -- ,  o~ .  

is absent. The conservation laws for two-phase flows are usually given as phase averaged velocities 
(UL) and ( v )  for the liquid and gas: 

for the liquid in a one-dimensional flow, 

(1 - ~)(UL)A = const: [6] 

for the gas in one and three dimensions, 

uGA=E(v)A=const and ~x i (E(v i ) )=0 .  [7] 

It is more usual in two-phase flow calculations, following Zuber & Findlay (1965), to relate the 
bulk liquid and gas velocities UL and uG, by an empirical relation involving the void fraction E and 
the bulk relative velocity (Vs),  viz. 

//(3 = C 0 ( u  G .~_ UL ) _~ ( V s )  ' [8] 
E 

where Co is a coefficient representing the distribution of the dispersed bubbles relative to the liquid 
velocity profile. (There may well be other explanations.) In the case of a flat velocity profile and 
a uniform distribution of bubbles then Co = 1. In other cases, Co can be as high as 1.6. (Vs)  is 
a weighted drift velocity which for laminar bubbly flow is given by (Govier & Aziz 1982, p. 383) 

(1 - 0'". [9a] ( V s ) = C  agpL/ 

/ 

. . . . . . . - - - -~_ . . .  

J m ~  

Figure 3a. Sketch of entrapment of marked fluid by 
stationary particles in a flow. The solid line denotes the 
initial marked fluid, the dashed line denotes the marked 

fluid law. 

X 

l 
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0 
0 0 

V 

~U01 < 0 

Figure 3b. Bubbles rising m an ambient 
fluid with a downward and opposite flux 
of fluid (i.e. a negative interstitial velocity 
u0j < 0), given by [4] with zero net upward 

flux (i.e. ( u , )  = 0). 
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Since C(¢rgAp/pL)°'25 is Harmathy's empirical relationship for lit, the low void fraction equation 
[9a] can be re-expressed in our notation as 

(Vs) = Vt(1 - e) '5 ,~ Vt(1 - 1.5E). [9b] 

Substituting [9b] into [8], taking Co = 1, [8] reduces to 

ULE -- UO(1 -- E) = (--E + 1.5Ez)Vt . [10] 

This empirical result can be compared with the theoretical predictions from [4] and [7], which 
when they are combined to eliminate the interstitial velocity, lead to 

ute -- UO(1 -- E) = [--e + (1 + C m ) £ 2 ] ( v  - U0). [1 l] 

Comparing [11] with [10] we see that the theoretical approach is consistent with Zuber & Findlay's 
(1965) empirically verified formulation if v - u 0 = V t, and if Cm = 0.5. This confirms our view that 
the correct way to formulate drift velocity or slip is relative to the interstitial velocity. Void fraction 
does not then affect the bubble rise velocity directly. The Zuber & Findlay formulation masks the 
true effects of void fraction by considering the slip relative to the mean liquid velocity which has 
no physical significance for the bubbles. 

3. PRESSURE GRADIENTS IN BUBBLY FLOW 

3. I. A single particle in a control volume 

In order to calculate the pressure gradient induced by bubbles and particles in non-uniform flows 
it is first necessary to relate the forces acting on a general particle in that flow to the pressures and 
stresses on a control volume far from the particle. Consider a particle with a surface denoted by 
/~ with an outward unit normal na to an element of this surface, moving with a velocity v. The 
particle is enclosed within a bounding surface ~ with unit normal n~, see figure 4. The total volume 
of the fluid and particle is V, the fluid volume is Vf, and the particle volume is lib. The fluid within 
this control volume is acted on by the forces as the control surface ~ and by the forces at the body 
surface/L On integration of the Navier-Stokes equation in tensor notation over the volume of fluid 
contained between the two surfaces, we have 

~x + p L ~ - + p L  (U~Uj)--q OX------f--pLg ~ d r = 0 ,  [12] 

where p is the pressure and t/ is the viscosity. Using the divergence theorem, [12] implies 

+~l njdS - r l  jc -~xjnjdS--pL g, d V = O .  [13] 

In order to use [13] to calculate the change in pressure caused by a particle, we need to consider 
the pressure gradient in the absence of the particle: 

Opo ~Uo~ 0 0 2 
ax, F PL "-ffi- + ~xj (pL Uo, Uoj) -- q OX---~j UO,- Pegi = O, [14] 

where the subscript "0" denotes values in the unperturbed fluid far away from the bubble. The 
control surface ~ is far enough from the particle that its perturbations on the undisturbed fluid 
velocity and pressure are small. Thus on ¢ 

u , = u o , + A u ,  p = p o + A p ,  where IAuA<<lu0~l, IApl<<lp01. [15] 

Since there is no flux of fluid through the particle, the normal velocity in the fluid is equal to that 
in the liquid and therefore 

ujnj=vjnj and f u, ujnjdS =vj f u, njdS. [16a] 
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If the particle is rigid, so that the no slip condition applies, uj = vj and then 

f u i u j n j d S = f v i v j n j d S - - O .  [16b] 

Obviously, [16b] is a special case of [16a]. The viscous stresses vii on the particle are defined by 

; "~ijnjdg = ~l fl3 63ui ~xj nj dS. [171 

By integrating [14] within Vr, in the absence of the bubble, and using the results of [15]-[17], 
[13] leads to the interfacial force Fi being given in terms of the momentum flux across the control 
surface and the momentum of the liquid accelerating with the bubbles: 

+ PL cgt t. dv  r 

where F, is the/-component of the force acting on the particle given by [3a]. We have verified this 
formula by integrating the solution of the pressure and velocity field for a single bubble over the 
surface ~. 

The formulae [13] and [18] can be simplified for small symmetrical particles, namely a circular 
cylinder or a sphere in two- or three-dimensional flows in an inviscid straining flow. Then the 
integral of the change in (Oui/Ot) over the fluid volume is 

fvf °u°'3ot / 
O(u,-uoi) d V =  Cm vb(d7 vi [19a] 

c3t 

The surface integral over the particle in this case is also related to the non-uniformity of the ambient 
flow for a circular cylinder or sphere ;, 0 

vj uinjdS = VbVj=--Uoi. [19b] 
Oxj 

Substituting [19a] and [19b] into [18] leads to 

(Eli -- Foi) = .[~ (Apni+ pL (uoiAuj + uojAu~)nj) dS  

- v j - - +  u0j-~xjj. [20al + PL Vb Cm -~ Ot J OXj 

For some problems it is simpler to consider the total volume V within the surface ~ by including 
the liquid and the particle volume. Then using [19al and [19b], [13] reduces to 

v - v j ~ + g i  • [20b] (pni + pL u, ujnj) d S =  - kPL-~-  - gi d V  - F,i - pL Vb Cm k d t 

This result has been checked by calculating the far field pressure and velocity around a sphere and 
a cylinder moving in an inviscid straining flow. (It is important to note that the far field pressure 
is unsteady because the particle moves through the non-uniform flow.). 

3.2. A control volume containing many particles 

We now consider the average pressure in the liquid for a bubbly flow containing many (N) 
particles (n = 1 . . . . .  N), see figure 5, some of which are close to or intersecting the control surface 
~. So we need to consider the average over all possible locations and orientations of bubbles relative 
to this control surface. Evaluating this average is straightforward if we define the velocity and 
pressure in terms of their values near the particles (ui and p). We make the assumption that the 
length scale of the control volume L is large compared with the distance between the bubbles which 
is of order aE - ~, a is a typical bubble diameter. Then the contributions to the volume integrals are 
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Figure 4. Definition sketch for the calculation of mo- 
mentum flux through a control surface ~ of a liquid 
volume Vf, containing a single bubble with surface//. 

Figure 5. Definition sketch of a control volume of length 
scale L containing many particles of radius a. Note that 
L is much greater than the average distance between 

particles (of order aE-l). 

independent of  the averaging operation of  u~uj and p near the control surface. [One might describe 
this as a "fuzzy" control surface whose thickness is O (aE - I), by analogy with the usual continuum 
approximation.] 

We denote a volume average within the liquid alone by ( ) ,  over a scale of  order aE -1, Note 
that, because the pressure and velocity field near the bubbles are different from their interstitial 
values, ( p )  ~ P0 and (uiuj) ~ UoiUoj. Note that because the interstitial values o f p  and u~ are defined 
to be constant (locally on a scale aE-~), 

(P0)  =P0 and (UoiUoj) = UoiUoj. 

Then the integral of  [20b] within the control surface ~, when all N particles are considered, is 

{ duo, __ gi) d f¢(pon,+pLUo, Uojnj)dX+f¢6M, dX=--jvPL~,-- ~- V 

Cm ~ "~ Ot ] Oxj --.=1 - - v j - - + g i  , [21a] 

where 6M~ is the additional momentum flux in the liquid at the control surface caused by the flow 
near the bubbles and by the viscous stress, 

~Uo~ -l .~ 

In inviscid flow, for bubbles at high Reynolds number, the differences between ( p )  and P0 and 
between (u~uj) and uo~Uoj are caused by the additional kinetic energy and momentum flux in the 
liquid near the bubbles. These are proportional to the square of  the difference between the velocity 
of  the bubble ui and that of  the liquid surrounding the bubble uo~. They are also proportional to 
the relative volume of  the liquid occupied by the bubbles. 

For  spherical bubbles in irrotational flow (such that the gradients of  u0; are small over a scale 
a), potential theory (see appendix D) gives 

I CmPL (t~ i -- UOi)2E 
( P )  - P 0  = (1 --E) 
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and 
), 

CmPL (Vi- Uoi)2t~ij(. 

PL((UiUj) --UoiUoj) --'-- (l - e) ' [22]  

where 2 = 4/5. 
The result in [21a] can be applied to the pressure drop along a duct (see figure 6), between 

cross-sections (1) and (2) at x = x~ ~), x~ 2) normal to the x:axis.  The areas are A °) and A a). Note 
that over the area of the walls of the duct Aw the pressure, defined as Pw (to be discussed later), 
acts normal to the wall in the direction -nw. But the normal velocity is zero so uinw~ = 0. It is 
convenient to express the force on a particle as the average force on a particle per unit volume 

/~i_ I ~ El ") 
V N ~ V (")' 

where V is the average volume of the particles, and the acceleration as 

Ovl 1 u dv~.) 

c~-=t- = N" ~ at 

Since we are considering the local average of the added mass acceleration of many particles, it is 
necessary to write this differential as Ov/t~t. Note that it implies that in the limiting case of the 
particles having the same density as the liquid Po = PL, then 

aUo~ f O vl=Uol and ~3~-- = 0, ~t(ui-uoi)dV=O. 

By considering the component of [21a] along the duct, we obtain: 

fA~,~(P° + pLu2' + ~Mt)dA -- fA(2)(P° + PLU~' + rMt)dA + fA, P'n'I dA 

: _ r .,-, rr, .. ,.,,, ,no, ) - , ,L,,  "o, I _  (I __ (:)p L ( C~Uo,'~]>g,_ , .  
j . (  L v at ax, J Ot /)dV, [23a1 

where 

6Ml = ½CmpL(V, -- u0,)2(2 -- 1)E(1 -- E), [23b] 

and 2 is given by [22] for high Reynolds number for the bubbles. 
By considering the two cross-sections at x~ ~) and x~ 2) to be close enough that the change in area 

A is small so I A ") - A a ) l  <<A 0), but separate enough to be greater than the distance between the 
bubbles (i.e. I x~ 1) - x~2) l>>ae-l), and assuming that the flow and the bubble distribution is uniform 
across the section, and that the presssure on the walls is constant around the cross-section, it is 
possible to convert the control volume equation [23a] into a differential equation for the rate of 
change of p0, u0t and A~ in terms of F~, E, v~ and (OUo,/Ot), viz. 

d 
- -  [A(p0 + pLU~I + 6Ml)] dxj 

=pw oh / / ~ P l  ~ U 0 l ~   u0,1 dx -A{,[~-~ -4-pLCm~-~ t;3t ]--pLVl Ox,_]'k'pL(l - , ) (~-~  -g,)}dV, [24] 

where 6Mt is given by [23b]. A useful check on these equations is that they show that an ensemble 
of particles with the same density (i.e. pp = PL) as the liquid, move at the same velocity (i.e. vt = u0, ) 
as the liquid and lead to the same pressure as for a homogeneous flow. 

Equations [3a] and [24] imply that the change of pressure and momentum flux is balanced by 
the force on the particles and effects of acceleration around the particles. We note immediately that 
in an accelerating flow, where Duo,/Dt > 0 and (V 1 - -  U01) > 0 ,  the result is that the pressure gradient 
is increased (in the case of a converging flow the negative pressure drop is increased). 
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r l  w 

Aw 

Aw \ (2) 

Figure 6. Flow through a duct from cross-section (2) to 
cross-section (1). 

,, _ _%,////, 

- p  

Figure 7. Sketch to show why the average pressure 
gradient in the liquid phase <dp/dx> is not equal to the 
hulk pressure gradient dpb/dx. The particles are repre- 
sented as slices across which there is a pressure drop Ap. 

To understand what exactly is meant by this differentiation it is helpful to consider the simplest 
case of sedimenting particles in a stationary liquid. In this situation (d/dx)6Ml = 0, and [24] reduces 
to the well-known result 

dp0 = - c  -~ + p (1 - E)g~. [25] 
dXl 

In this case gl = - g ,  and from [3c] F,/V = pp Vg, SO [25] reduces to 

dpo 
= dxz --g[Pt -- E(pL -- pp)]. [26] 

In this case the interstitial pressure gradient is equal to the usual "bulk" pressure gradient dpb/dX 
measured as a pressure difference between two planes over a distance large compared to aE-~. 

As G. K. Batchelor (unpublished) has pointed out, this "bulk" pressure gradient is not equal 
to the average pressure gradient in the liquid, (dp/dXl >. For this case, the latter is equal to the 
average viscous force exerted on the liquid by the particles and is determined by the detailed flow 
around the particle. 

A diagrammatic sketch (figure 7) shows why in general dpb/dXl (which is approximately the 
pressure gradient on the walls of a container) is not equal to <@/dx~ >. The particles (represented 
by slices of another phase) are equally spaced a distance 1 apart. These are represented by the 
shaded regions. Because of the equal spacing, the value of dpb/dx~ is equal to [p(x~ + l) - p ( x ,  )]/l, 
but the average value of dp/dx just in the liquid, is given by the integral of @/dx in the space 
between the particles 

= - d X l .  (/ a)jx,+  

Because there is a pressure difference Ap across the particle, there is a difference between dpb/dX~ 
and (dp/dx, > given by 

dxl 1 

For the case of sedimenting spheres at low Reynolds number their effect on <dp/dXl ) is two-thirds 
of their effect on dpo/dx~ (G. K. Batchelor, private communication). 
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4. B U B B L Y  F L O W  I N  A N O Z Z L E  

The steady flow air and liquid in a converging nozzle is described here by a one-dimensional 
flow model. The section under consideration is a linear contraction in a pipe whose axis lies at an 
angle ~ to the vertical (figure 8). The cross-sectional area of the nozzle is given by 

A ( x ) =  X A f + (  --x~)A(O), [27] 

where A (0), Af and xf are known, x = 0 is the position of the beginning of the contraction and 
x = 9.5 cm is the position of  the throat. Consider the motion of an identical set of spherical, 
non-deformable air bubbles (dia <3  mm) which are being acclerated by the flow but are 
undergoing only weak mutual interaction. In order to facilitate the analysis certain assumptions 
are made about the flow: 

1. At a given cross-section of the flow all the bubbles move with the same velocity. 
2. The axial gradients in velocity in the nozzle are of  an order of magnitude greater 

than the transverse gradients. 
3. The liquid is pure so that a linear drag law may be assumed ( f  = 1 in [3]). 
4. The axial component of the rise velocity for isolated bubbles in still liquid is 

V~cos~, where Vt= 2 5 c m s  -1 (Clift et al. 1978). 
5. The density of a gas bubble is zero (PG = 0). 
6. The void fraction is low enough that the force on each bubble is independent 

of other bubbles. 
7. To interpret wall pressure measurements we assume that the wall pressure Pw is 

equal to the average liquid pressure ( p ) .  

With these simplifications the expression for the force acting on a bubble in this one-dimensional 
flow reduces to 

dv duo v - u 
Cr, V-~x = (1 + Cm)u0-~- x + g  cos~ - g - - - ~ - t  + O(E), [281 

where v is the axial component of the bubble velocity and writing u0 for u0,, the interstitial liquid 
velocity. The correction to Ca is also of  order E (Van Wijngaarden 1976). Note that the lift term 
is identically zero in [28]. 

The set of  three conservation equations for the three independent variables v, u and E in this flow 
are [28] and the continuity equations 

[u0(1 - E) + CmE(V -- u0)]A = const [29] 

and 

wA = const. [30] 
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Figure 8. Sketch of a linear nozzle inclined at an angle ~ to the vertical. 
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For low values of  E the differential equation of motion and the mass conservation equations are 
solved using perturbation techniques to give the bubble and liquid velocities, the variation of void 
fraction through the nozzle, and the pressure drop in the contraction. The details of the 
mathematical procedure are given in appendix C. 

In analysis of the computations it is instructive to consider the limiting solution of  [28] when 
the acceleration effects are very large [i.e. uo(duo/dx)>>g], only the inertial terms are significant and 
then 

v 2 = 3[u02 -- u~(O)] + v2(O), [31] 

so the bubbles accelerate much faster than the liquid. When the inertial terms are small 

v = Uo + Vt cos ~, [32] 

so that the bubbles move with the liquid velocity plus a relative velocity. 

5. RESULTS 

Figures 9 and 10 show the variation of bubble and liquid interstitial velocity through the 
contraction for a flow containing a single bubble. The graphs are drawn for three different angles 
of inclination of the nozzle to the vertical (0 °, 45 ° and 90 °) and for representative values of liquid 
velocity of 10 and 50cm s -1. The nozzle was taken to have a length L = 9.5 cm and an inlet 
diameter D t and throat diameter D, of 7.8 and 3.9 cm respectively, giving a contraction ratio of 
4:1. Unless it is stated otherwise, these are taken to be the dimensions of the nozzle throughout 
the following analysis. 

For a liquid velocity of 10 crn s -1 the computed profiles are shown in figure 9. The liquid velocity 
(x  x x ) is seen to increase through the contraction from 10 to 40cm s -1 and thereafter remains 
at 40cms  -]. This rather artificial profile is due to the assumed form of A(x) in [27]. For the 
horizontal pipe (,t = 90 °) there is no component of buoyancy and the terminal rise velocity is zero. 
The bubble is accelerated through the nozzle and the relative velocity (v~ °) - u ~  °)) increases from 
0 to 8 cm s -I. On leaving the nozzle the bubble is acted on by drag and its velocity returns to that 
of  the liquid. The pattern is repeated as ~ is decreased with the initial bubble velocity being that 
of the liquid plus the component of terminal rise velocity. Again, the relative velocity increases as 
the bubble passes through the contraction and then returns to its initial value. 

For the higher liquid velocity of 50 cm s-l a similar set of graphs is shown in figure 10, together 
with the inviscid solution of [C.5] for the case ct = 0 and in which Au is large compared with Vt, 
given by [31]. It is seen ( .  • .) that when the inertial terms are significantly greater than the drag 
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on the bubble  its velocity increases in the nozzle and thereafter  continues to move  at the velocity 
it at tains at the nozzle throat .  N o w  introducing more  bubbles  so that  the initial void fract ion 
c(0) = 0.05, figure 11 shows the var ia t ion o f  gas void fract ion with distance f rom the nozzle inlet. 
It  is clear that  there is a significant var ia t ion o f  E for the two different initial velocities u0(°)(0) and 
that  for  bo th  values of  u(0°)(0) the change in void fract ion in the horizontal  pipe (~ = 90 °) has a 
similar behaviour .  In fact the behaviour  o f  E, when E << 1, m a y  be predicted analytically by writ ing 
[C.9] in the fo rm 

E v(00)(0) ( 
c ( 0 ) -  u~0)(0 ) . 1  ~ ] ,  [33] 

using [C.6]. It  follows immediate ly  f rom [33] that  for ~ = 90 °, in which v(°)(0)= u~0°)(O), that  there 
is no initial slip between the phases,  so that  E = E(O). Beyond the throa t  o f  the nozzle v(°)= U~o °) 
because o f  drag,  so again the void fract ion returns to the inlet value. At the throat  o f  the nozzle 
(x = 9.5 cm) the relative velocity (v ( ° ) -  u(0 °)) is a max imum;  hence E/E(0) has a m in imum which is 
<1  for  all liquid velocities. The  case when ~ # 90 ° is interesting in that  the initial behav iour  of  
~/E(0) is dependent  on the value of  u0(0). Fo r  both  velocities, ~ increases f rom E(0) downs t ream 
of  the throa t  because (v (°) - u(0 °)) returns to the cons tant  value Vt cos • because of  drag,  and v (°) 
has increased. Near  x = 0 the behaviour  of  ~/E(0) is governed by the relative increase of  bubble 
velocity v (°) and slip (v ( ° ) -  U~o°)), with the bubble  velocity for  u(0°)(0)= lOcm s -~ increasing more  
rapidly than the slip and vice versa for U(o°)(0)= 50 cm s - ' .  This is also reflected in the behaviour  
o f  E at  the throat  o f  the nozzle. 

It  appears ,  on all plots o f  E/E(0), that  the void fract ion does not  settle down to a cons tant  value 
immediate ly  at the throa t  o f  the nozzle, in some cases not  until values of  x relatively far  downs t ream 
of  the throat .  The reason is that  the drag  effect takes a finite distance ,~aCD ,n,,(o)/r.(o) ,,(oh ~ u ~ O  / \  t~ - -  ~tO ) t h r o a t  

to bring the relative velocity back  to 10% of  its initial value Vt cos ~ after the bubbles  clear the 
throat  o f  the nozzle. Similar observat ions  have been made  by Thang  & Davis  (1979), who measured  
profiles o f  void fract ion across vertical venturi  tubes at  different points  a long the nozzle. They 
measured  an increase in mean  void fract ion through the venturi  which is consistent  with the plots 
in figure 11 with ~ :/: 90 °. The  var ia t ion of  void fract ion is similar for  o ther  values o f  e(0). 

Figure 12 shows the effect o f  the var ia t ion o f  void fract ion th rough  the nozzle on the liquid 
interstitial velocity u0 for u(0 °~ (0) = 10 cm s-1 and E (0) = 0.05 and 0.1. The plots are d rawn for ~ = 0 ° 
and 90 ° only for  the sake o f  clarity. It  is shown that  for  a given value of  ~ and E(0) there is an 
increase in the value of  liquid velocity f rom the value u(0 °> at a given posit ion in the nozzle. The 
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case for ut0°)(0) = 1 cm s -l .  

value of E increases on passing through the contraction so that the effective cross-sectional area 
through which the liquid has to pass decreases, so the liquid velocity has to increase to maintain 
a constant flow rate through the nozzle. Note that from [C. 1] and [C.8] the initial interstitial velocity 
is (10 + 0.1 x ½)= 10.05, in the horizontal nozzle (~t = 90°), where the void fraction E does not 
change, the final liquid interstitial velocity is about four times its initial value. 

Figure 13 shows the variation of  void fraction in a vertical nozzle for two limiting cases of  
terminal rise velocity. For  the case V,>>u0, so that v ~ Vt, (V~ ~ 25 c m  s - l ) ,  [7] predicts that the 
variation of E through the nozzle is approximated by E = E (0) A (O)/A ( ©  O ©) .  It is seen from the 
plot for ug°)(0) = 1 cm s- '  (D[-I[-]) that this limit is approached. For  Vt<<u0, [31] gives v ~ w/3u0, 
[4] and [7] then imply that the limiting value of E is c (0)/V/3, which is confirmed by the plot for 

u(0°)(0) = 500cm s- '  ( I i I ) .  
A comparison between the graphs in figure 10 with those in figures 14 and 15 shows the effect 

on v of  increasing the number of  bubbles in the flow. It is seen that for a given value of ct, at a 
fixed position in the nozzle, the effect of  increasing E(0) is to increase v. This is most noticeable 
at the throat of the nozzle where the absolute value of slip (v - u0) has increased, remembering 
that u0 has also increased with E (0). The liquid velocity profile for ~ = 90 ° only is shown. For E # 0 
it is evident from figures 14 and 15 that the bubble velocity does not settle to a constant value until 
a relatively far distance downstream of  the throat, in comparison to the plots in figure 10. This 
is a result of the void fraction taking a finite time to adjust itself to a constant value on leaving 
the contraction, as was noted in figure 11. It is also noted that the final values of v downstream 
have increased since the final values of liquid velocity have increased (see figure 12), and 
v = u + VL cos ~ for large x. 

Figure 16 shows the plots of the pressure terms. The graphs for ~ = 90 ° only are shown, for 
clarity. Also drawn for comparison is the pressure variation for liquid flow only through the nozzle 
[E(0) = 0]. The graphs show that the average pressure in the liquid between the bubbles P0 is 
approximately the same as the average pressure ( p )  across the whole liquid. We assume Pw ~ ( P ) ,  
since bubbles move near the wall. A comparison between the graph o f p ,  and the graph of  pressure 
p, for e (0) = 0, shows that the effect of  the presence of  a void fraction of  bubbles is to increase 
the pressure drop through the nozzle. The continuing decrease in pressure drop downstream of the 
throat is due the hydrostatic head, though for Pw this may also be due to the adjustment of  the 
void fraction as noted in figure 11. It is of  interest to note that p ,  is the pressure which a measuring 
device such as a pressure transducer would register. 
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Figure 17 shows the comparison between the theoretical results discussed in section 5 and the 
experimental data of Lewis & Davidson (1985) for the variation of two-phase pressure drop with 
gas void fraction for a converging nozzle for different superficial liquid velocities and different 
values of inlet and throat area. Lewis & Davidson measured the ratio of two-phase pressure drop 
at the throat Ap with the equivalent pressure drop ApE0 for liquid flow only. This ratio was plotted 
against the upstream gas void fraction ~(0), the superficial velocity having the same value at each 
value of e(0). 
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In their apparatus, nozzles with entrance diameters DE of  4.5 and 6 cm and throat diameters DN 
of  3 and 4 cm, respectively, were mounted in the centre of  a 9.52 cm dia (=D I )  pipe and pressure 
measurements were taken between transducers positioned one diameter DI upstream of  the entrance 
to the nozzle, and at a distance H = 14.28 cm ( =  1.5DI) downstream of  this point. In the theoretical 
model we assume a linear nozzle with an inlet diameter DI of  9.52 cm and throat diameters of  3 
and 4 cm, giving contraction ratios CR = A (O)/A (L) of  10 and 5.7, respectively. The lengths of  the 
nozzles were taken to be L = DI + 0.304DN, and thereafter the nozzle becomes a straight pipe of 
diameter DN. The pressure difference is measured from the entrance of  the nozzle to a distance 
14.28 cm downstream. The hydrostatic pressure difference in the nozzle is taken into consideration 
in [B.6]. Lewis & Davidson add a correction factor E(H)pgH to their measured pressure drop to 
account for the hydrostatic pressure difference due to the difference in height between the 
transducers. 

In figure 17, in order to make a valid comparison with the Lewis & Davidson data, we plot the 
ratio Ap/ApL 0 vs E (0) for the nozzle where Ap = Ap, - ~ (H)pgH, Apw is our calculated pressure drop 
and ~(H) is our theoretical value of downstream void fraction. Figure 17 shows that where E is 
small the ratio is linear in E, and the agreement is reasonable given that the above analysis assumed 
a different type of  nozzle from that of  Lewis & Davidson (though we have checked that the nozzle 
shape does not greatly affect the results) and we have made certain assumptions about nozzle 
specifications in the model. Note that the theory is only valid to O(E), so the non-linear element 
of  the curve cannot be trusted. 

Simplistic assumptions might lead one to expect that for a fixed value of  superficial velocity the 
pressure drop would decrease as E (0) increases, when in fact the pressure drop is seen to increase. 
A consideration of the flow as two separate liquid and gas phases explains why this is so. From 
a simple mass balance for the liquid, as E(0) increases the liquid has effectively a smaller 
cross-sectional area through which to pass and its velocity (and therefore pressure drop) necessarily 
increases. This assumes that the bubbles are small enough not to become elongated in the 
contraction. 

In the derivation of  [B.6] it was assumed that the flow was inviscid and slipped over the surfaces 
(e.g. small spherical bubbles in pure liquid). However, for a particle such as a bubble in a real liquid 
the flow is closer to that over a rigid particle with a no-slip condition and a significant drag, then 
[16b] rather than [19b] is relevant and the term in [B.5] [= pLVI(dUo1/dXl)] has to be omitted. The 
resulting plots in figure 18 are drawn for the same parameter values as in figure 17. With the slip 
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condition removed the change in momentum flux in the liquid and the pressure drop is greater, 
as noted in figure 18. The agreement between the theory and experiment is now close. However, 
the main conclusion is that the two-phase pressure correction is quite sensitive to this term 
depending on the slip/no-slip boundary condition. 

It was noted from figure 18 that for small values of void fraction (E(0)< 0.1) the variation in 
the graphs,is linear. In figure 19 we plot the initial gradient of the normalized pressure drop in 
figure 17 {[(Apw/ApLo) - 1]/0.1} vs the contraction ratio C R of the nozzle, for a value U L / V  t ~ O(1), 
and with the no-slip condition imposed on the bubbles. It is seen that the gradient increases with 
CR as expected, but as CR increases further the gradient asymptotes to a constant value. We do 
not know at this stage if this behaviour is present over a greater range of liquid velocities. 

6. CONCLUSIONS 

A one-dimensional gas-liquid flow model has been developed to describe the motion of a bubble 
in an accelerating flow. The presence of a dilute void fraction of bubbles has also been accounted 
for in the mass conservation equation for the total liquid flow. This theoretically derived equation 
is equivalent to the empirical Zuber & Findlay (1965) relation for straight pipes, and low void 
fraction. 

The analytical model has been applied to the particular case of bubbly flow in a linear nozzle 
and the variation of bubble velocity, liquid velocity, gas void fraction and the liquid pressure terms 
have been analysed. It has been shown that the bubbles are accelerated and the relative velocity 
between the bubbles and the liquid increases on passing through the nozzle. Thereafter the bubbles 
are acted upon by drag. This mechanism affects the behaviour of void fraction through the nozzle 
which is shown to be sensitive to the variation of relative velocity with bubble velocity. An 
interesting prediction of the model is that the void fraction is unchanged on passing through a 
horizontal nozzle. The results have been compared, where possible, to relevant available experi- 
mental data. The analysis predicts an increase in mean void fraction through the nozzle which is 
consistent with the measurements of Thang & Davis (1979) and good agreement exists between 
the measurements and the predictions for pressure drop in a converging nozzle. 

There remain some fundamental questions about the appropriate boundary condition of the 
velocity on the bubble and about the definition of the pressure field measured at the wall. 
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A P P E N D I X  A 

The Drag Force 

The drag force caused by the pressure distribution around the bubble being changed by the 
viscous stresses in the flow around the bubble is a function of the radius a, the density of the liquid 
and the relative velocity (v i -  u0i). It is also a function of the non-uniform and unsteady flow around 
the bubble, but these effects are ignored here. The usual dimensional scaling, using a drag coefficient 
Co, leads to 

FDi = -- O. 5 pL CD (Vi -- Uoi) I vi - u0, I rca 2, [A. 1 ] 

where CD is an empirically known function of the Reynolds number of the relative velocity, 

Re = I vi - Uoi[ a ., [A.2] 
V 

see Clift et al. (1978). 
In many situations it is more convenient to express Fo in terms of the observed value of the rise 

velocity 1I, rather than the unknown drag coefficient and the bubble radius, using the relation 

Then [A.1] becomes 

0.5pL CD~za2V~ = lap IgV. 

IApl ( V i -  Uoi) lv i -  u0il 
FD, = --PL PL Vg V .  2 , [A.3] 

where V* is that value of the rise velocity in still liquid for the same value of Co as for the bubble 
in the moving liquid. For a pure liquid, whether at high or low Reynolds number, CD OC 1/Re. This 
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leads to 

l a p  I (v, - Uo,) 
FD, = --PL Vg , [A.4] 

PL Vt 

where V t is the actual  rise velocity of that particular bubble. 
For a bubble in dirty water at high Reynolds number where CD is approximately constant, 

Foi = - -  P L  I Ap___II Vg (vi - Uoi) t v, -- u0, I [A. 51 
P L  V2t ' 

where Vt is the actual rise velocity. 
To cover the most common situations [A.4] and [A.5], we write 

FD, = --PL IApl Vg (v , -  U o , ) f f l v ,  "~U0i[x~ [A.6] 
PL Vt ~ Vt ] "  

w h e r e f  = 1 or f =  Iv i -  Uoil/Vt. This form is not  as general as writing FD in the form of [A.I] or 
[A.3]. But other uncertainties are probably more serious. 

A P P E N D I X  B 

In this section we summarize the equations derived in the preceding sections for a single gas 
bubble in an accelerating flow. The symbols are defined in sections 1 and 2. 

The interfacial force acting on a single bubble with the average volume V is given by 

E l = p L Y  (1 -k Cm)--D- ~- --Cm-- ~ -  - -  g i  - -  [ C L  (t) --U0) X 021i + F D v  [B.I] 

The mass conservation equations for the bubbles in three-dimensional flow are as follows: 

0 
Ox---~ [uoi(1 - E) + CmE0) / -- U0i)] = 0, [a.21 

for the liquid; and 

0 
--(Ev,) = 0, [8.31 
0xi 

for the gas phase. 
The relations between the different average pressure fields and the flow in a duct are given by 

0.5E 
( P )  =P0 - -  Cm(/) - -  U0) 2, [B.4] 

(1 - E )  

where ( p )  ~ Pw, and P0 satisfies the equation 

d 
- -  [A (Po + pLUZo, + 6 M ,  )] 
dx~ 

= pw-d-~x - A E + p L C m ~ N  

where 

~-~ ) - - P L / ) I ~ I I ] ' t - p L ( 1 - - E ) k - - -  ~ -  

6Mr = ½CmPL0) 1 -- U01 )2(j. __ 1) - -  
(1 -E)"  

Equations [B.1]-[B.6] are complete and can provide solutions for all the variables. 

[B.5I 

[B.6] 

A P P E N D I X  C 

It is required to solve the differential equation [28] together with the mass conservation equations 
[B.2] and [B.3]. For a dilute concentration of bubbles (E ~ 0.1) we consider the interstitial liquid 



MOTION OF BUBBLES AND PARTICLES IN NON-UNIFORM UNSTEADY FLOWS 605 

velocity Uo and the bubble velocity v to be perturbed from their respective values U(o °) and v (°) in 
a flow containing a single bubble, due to the presence of  a void fraction E(O) of bubbles, where 
(0) denotes the conditions at the start of the contraction (x -- 0). Writing 

Uo = u~ °) + E(O)u', 

v = v ~°) + e (0)v', [C. I] 

where ' denotes first-order perturbation terms, Equation [25] implies 

d 
cm[v(°) + E(o)v'l  [v ~°~ + E(o)v'] -- (1 + c,A[u~") + E(O)u'l x ~ [u~ °) + E(O)u'l 

+ g  cos • - ~ [v (°) - u~ °) + E(0)(v' - u')]. [C.21 

Equations [4] and [7] give 

ULsA = ULS(0)A (0) = {(1 -- E)[U[ °) + E(0)U'] + CmE[V ¢°) -- U[ °) + E(0)(V' -- u')]}A [C.3l 

and 

E [v co) + E (0)v ']A = E (0) [v (°)(0) + E (0)v '(0)]A (0). [C.4] 

Comparing zero-order terms in [C.2] and [C.3], 

dr(°) = (1 + Cm)u[ °) du[°) g (v (°) -- ug °)) + g cos • [C.5] 
C m V (0) dx dx Vt 

and 

u~°)A = u~°)(O)A (0). [C.61 

Equation [C.5] is the equation of  motion of a single bubble in the nozzle. Equation [C.6] states 
that for a small bubble whose volume can be ignored, as a first approximation, the liquid flow rate 
through the nozzle is constant. 

Comparison of  the first-order terms in [C.2]-[C.4] implies 

dv' dv (°) ( ~ du~ °), g , ,  
v(o) d~+V'--~-x =(] +Cm) u~ °) +u'~-x :--~ttv -u'),  [C.71 

and 

u ' =  E 1 [( + C m ) u ~  °) - v(O)] [c.81 

Ev (%4 = E (0)v(°)(o),4 (o).  [C.9] 

Equations [C.5]-[C.9] and [B.5] are solved by numerical integration for u~ °), v! °) E, u', v' and the 
pressure terms in that order, for different initial values of liquid velocity, void fraction and different 
angles of inclination of the nozzle whose physical dimensions are specified. 

A P P E N D I X  D 

To derive the result in [22] we consider the ease of a bubble radius a, volume V moving with 
velocity v parallel to the liquid which has a velocity u0 (see figure D1). The velocity potential 4) 

~ ix = u° 

Figure D1. Definition sketch of a stationary bubble in a uniform velocity for calculation of 2 in 
appendix D. 
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for such a flow (Batchelor 1967, p. 452), in spherical polar coordinates moving with the bubble 
(0 = 0 corresponds to the direction of motion), is 

l i t  ~3 x 49 = Uox + 5,.oU -~, [D.1] 

where Uo = (v - Uo), and 

~ a 3 X 2 a 3 
- -  ~ l 3 3 &x U o + ~ U o ~ - i U o a  ~ =  U o + ½ U o ~ ( 1 - 3 c o s 2 0 ) .  [D.2] 

The difference in velocity between the liquid near the bubbles and the unperturbed liquid is then 

~rca3((u~)-u2°')= f,°F(Oq~']z-fOq~'~2] \ o x j 0  

ff ¢=Va3 ] ! / / 2 a 6 ( i  = | | u g T ( 1 - 3 c o s 2 0 ) + 4 , , o T ~ , . - 3 c o s 2 0 ) 2  2rrr2sinOdrdO. [D.3] 
do L r 

Integrating over 0 eliminates the first integral. Thence the integral gives 

(u,)2 u~,=~ 2 - -  ~ U o . . ~ - ~ C m  v 2 ,  

where 

C m = ½ and 2 = 4. [D.4] 


